
0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3054886, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Event-Stream Representation for Human Gaits
Identification Using Deep Neural Networks

Yanxiang Wang, Xian Zhang, Yiran Shen∗, Senior Member, IEEE, Bowen Du, Guangrong Zhao,
Lizhen Cui, Member, IEEE and Hongkai Wen, Member, IEEE

Abstract—Dynamic vision sensors (event cameras) have recently been introduced to solve a number of different vision tasks such as
object recognition, activities recognition, tracking, etc. Compared with the traditional RGB sensors, the event cameras have many
unique advantages such as ultra low resources consumption, high temporal resolution and much larger dynamic range. However, these
cameras only produce noisy and asynchronous events of intensity changes, i.e., event-streams rather than frames, where conventional
computer vision algorithms can’t be directly applied. In our opinion the key challenge for improving the performance of event cameras
in vision tasks is finding the appropriate representations of the event-streams so that cutting-edge learning approaches can be applied
to fully uncover the spatio-temporal information contained in the event-streams. In this paper, we focus on the event-based human gait
identification task and investigate the possible representations of the event-streams when deep neural networks are applied as the
classifier. We propose new event-based gait recognition approaches basing on two different representations of the event-stream, i.e.,
graph and image-like representations, and use Graph-based Convolutional Network (GCN) and Convolutional Neural Networks (CNN)
respectively to recognize gait from the event-streams. The two approaches are termed as EV-Gait-3DGraph and EV-Gait-IMG. To
evaluate the performance of the proposed approaches, we collect two event-based gait datasets, one from real-world experiments and
the other by converting the publicly available RGB gait recognition benchmark CASIA-B. Extensive experiments show that
EV-Gait-3DGraph achieves significantly higher recognition accuracy than other competing methods when sufficient training samples
are available. However, EV-Gait-IMG converges more quickly than graph-based approaches while training and shows good accuracy
with only few number of training samples (less than 10). So image-like presentation is preferable when the amount of training data is
limited.

F

1 INTRODUCTION

Inspired by the principles of biological vision, Dynamic
Vision Sensors (DVS) [1], [2], [3] are a new sensing modality
for a number of tasks such as visual odometry/SLAM [4],
[5], [6], robotic perception [7], [8], [9], [10] and object recog-
nition [11], [12]. Unlike the RGB cameras which produce
synchronized frames at fixed rates, the pixels of DVS sensors
are able to capture microseconds level intensity change inde-
pendently, and generate a stream of asynchronous “events”.
The design of DVS sensors provides many benefits over
the conventional RGB cameras. Firstly, DVS sensors require
fewer resources including energy, bandwidth and compu-
tation as the events are sparse and only triggered when
intensity changes are detected. For example, the DVS128
sensor platform consumes 150 times less energy than a
CMOS camera [1]. Secondly, the temporal resolution of
DVS sensors is tens of microseconds which means the DVS
sensors are able to capture detailed motion phases or high
speed movements without blur or rolling shutter problems.
Finally, DVS sensors have significantly larger dynamic range
(up to 140dB [1]) than RGB cameras (∼60dB), which allows
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them to work under more challenging lighting conditions.
These characteristics make DVS sensors more appealing
than RGB cameras for vision tasks with special requirements
on latency, resources consumption and operation environ-
ments.

In this paper, we investigate the feasibility of using DVS
to tackle the classic gait recognition problem. Specifically, it
aims to determine human identities based on their walking
patterns captured by the sensors. This is a fundamental
building block for many real-world applications such as ac-
tivity tracking, digital healthcare and security surveillance.
In those contexts, DVS sensors have unique advantages
over the standard RGB cameras because i) their low energy
and bandwidth footprint makes them ideal for always-on
wireless monitoring; and ii) the high dynamic range allows
them to work under challenging lighting conditions without
dedicated illumination control.

However as shown in Fig. 1 (a), DVS operates in a
completely different way than the RGB cameras, which
generates asynchronous and noisy events, termed as event-
stream, rather than frames when capturing human motion.
The conventional RGB-based algorithms are designed on
top of feature extracted or learned from discrete 2D frames,
therefore, existing image processing or deep neural net-
works can’t be applied directly on the asynchronous event-
streams. In this paper, we propose new event-based gait
recognition approaches which are able to work with the
noisy event-streams and accurately infer the identities based
on gait. We represent the event-streams in either graphs or
event images and design specific deep neural networks for
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Fig. 1: (a) DVS sensor generates asynchronous event-stream when a subject is walking in front of it. The positive intensity
changes (+1) are denoted in red and negative intensity changes (-1) are in blue. Red changes to yellow and blue changes to
green gradually with time. (b) Noisy events stream caused by a rotating dot (adapted from [13]).

recognition accordingly. Specifically, the technical contribu-
tions of this paper are as follows:

• We consider two types of representations for the
asynchronous event-streams, i.e., 3D-Graph and event-
image. To the best of our knowledge, this is the first
piece of work using 3D-Graph to represent event-
streams and we believe the 3D-Graph representation
can better preserve spatio-temporal features of the
event-streams inherently.

• Along with the new representations, two event-based
gait recognition approaches, EV-Gait-3DGraph and EV-
Gait-IMG, are designed by facilitating Graph-based
Convolutional Networks (GCNs) for 3D-Graphs and
Convolutional Neural Networks (CNNs) for image-like
representation. They are able to recognize the identities
from the asynchronous and sparse event data generated
by human’s gait effectively.

• We collect multiple event-based gait datasets. DVS128-
Gait-Day and DVS128-Gait-Night were collected un-
der practical settings and reasonable variance on the
scale of subjects is allowed. EV-CASIA-B was trans-
ferred from RGB-based dataset. The evaluation on
DVS128-Gait datasets shows that the proposed EV-Gait-
3DGraph and EV-Gait-IMG can recognize identities up
to 94.5% and 87.3% accuracy respectively when 100
training samples per subject are used and image-like
representation shows good accuracy when only few
number of training samples are available. The evalua-
tion on EV-CASIA-B shows EV-Gait-IMG achieves com-
parable (even better in some viewing angles) perfor-
mance with the state-of-the-art RGB-based approaches.

The rest of the paper is organized as follows. Section 2
reviews the related work of gait recognition using DVS
sensors and applications of graph-based convolutional net-
works on vision tasks. Section 3 describes the workflow
of the proposed approaches in detail. Section 4 evaluates
the proposed approaches on both realworld and benchmark
datasets. At last, Section 5 concludes the whole paper.

2 RELATED WORK

Gait recognition has been intensively studied for decades
in computer vision community [14], [15], [16], [17] and
deep learning has been proven to provide state-of-the-art
performance on gait recognition without tedious feature
engineering [18], [19], [20], [21]. One classic approach for
gait recognition proposed in [16] was based on extracting
the silhouette using background subtraction and modeled
the structural and transitional characteristics of gait. Han
et al. [22] further improved the silhouette-based approach
by extracting scale-invariant features from the gait template.
Though template and feature based approaches were widely
investigated [17], [23], [24], designing optimal features are
still difficult tasks. Deep learning became popular in recent
years to solve classification problems in an end-to-end way
and requires no feature engineering. It has been introduced
for solving gait recognition problem and produced state-of-
the-art performance [18], [19], [20], [21]. CNNs are known
to work well on extracting features from images. Wu et
al. [18] proposed different CNN-based architectures for gait
recognition and produced state-of-the-art recognition accu-
racy on CASIA-B dataset. One of our proposed event-based
approaches also uses CNN, but our network is adapted to
process the event data instead of the standard RGB frames.

We also review the related work of using DVS sensors
for recognition or classification tasks. In [25], the authors
applied CNN for identifying gestures, like hand-wave, cir-
cling and air-guitar actions. Lagorce at el. [12] proposed a
new representation for event data called time-surface then
a classification model was built to classify 36 characters(0-9,
A-Z). Park et al. [26] employed a shallow neural network
to extract the spatial pyramid kernel features for the hand
motion recognition using DVS sensor. Graph-based repre-
sentation of event-streams was first introduced by Bin et
al. [27] to address the object recognition problem by con-
structing a 2D-Graph from a short-term event-stream and
employing graph-based convolution for feature extraction.
Then the work was extended to deal with action recognition
task [28] where graph-based convolutions were applied on
a sequence of 2D-Graphs to extract spatial features from
discrete slices of event-streams and 3DCNN was used on
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top of graph-based networks to extract temporal features.
In addition, Gao at el. [29] used the DVS sensor to track
the special markers equipped on the ankle joints of the sub-
jects for gait analysis. However, unlike our approach it did
not aim to recognize the identities and required attaching
special markers to human bodies which was intrusive.

At last we have a brief discussion about GCNs and its ap-
plications on various vision tasks. CNNs have been proved
to be powerful approach for addressing traditional vision-
based applications in which the signals are represented in
euclidean space. Similar convolution operations are then
applied on signals represented as graphs or manifolds [30].
According to different convolution operators, GCNs can be
vastly categorized as spectrum-based [31], [32] and spatial-
based [33], [34] approaches. The spectral-based convolution
on graphs was first proposed in [31]. The convolution oper-
ation exploits the normalized graph Laplacian matrix from
spectral graph theory which had been proved to be a ro-
bust mathematical representation of undirected graphs [35].
Spectral-based approaches have been successfully applied
to model the connectivity of the nodes and require a fixed
number of nodes. However, in the case studied in this paper,
the graphs constructed from different event-streams have
various number of nodes. Not only the connectivity but also
the locations of the nodes in spatio-temporal domain are
important for a robust representation of the event-streams.
Thus, the spatial-based approaches [36] which utilize the
location information and relaxes constraints on the structure
of the graphs are more appropriate on recognizing human
gaits from event-streams. There are a number of different
specific spatial-based convolution algorithms available [27],
[34], [37]. In this paper, we choose Gaussian Mixture Model
(GMM)-based convolution (proposed in Monet [34]) as the
fundamental building block for our deep recognition net-
work. There have been a number of successful applications
of GCNs on vision tasks. For examples, graphs could be
constructed from the RGB-D point clouds to preserve both
the appearance and geometric relations [38]. Then appro-
priate GCNs were applied to extract features from graphs
to improve the performance on semantic segmentation [39]
and object detection [40]. Besides the point clouds, the
GCNs have been also applied on 2D image processing tasks.
Graphs could be constructed through consecutive frames to
capture the spatio-temporal information in videos to infer
the common foreground objects [41] or realize multi-object
tracking [42], [43] with various sizes of objects. The skeleton
data is another type of data suitable for GCNs since the
graph is natural to represent the joints, bones and their
connections. For instance, a directed graph neural network
was proposed to predict the actions of human based on
the constructed graph from human skeleton data [44] and
achieved state-of-the-art performance.

3 EVENT-BASED GAIT RECOGNITION

In this paper, we propose new event-based gait recognition
approaches, EV-Gait-3DGraph and EV-Gait-IMG, to identify
gait from event-streams in the two types of representations.
The deep neural networks for the two approaches are de-
signed basing on GCNs and CNNs respectively.

3.1 EV-Gait-3DGraph

The workflow of EV-Gait-Graph3D and the key components
of the proposed GCN are shown in Figure 2. It starts with
collecting event-streams consisting of hundreds of thou-
sands events. Considering the computational complexity,
the OctreeGrid filtering algorithm is applied to significantly
reduce the number of events while preserving most of the
spatio-temporal structure of the event-streams. The connec-
tivity between the remaining events after downsampling
is calculated according to the predefined radius of neigh-
borhood to construct 3D-Graph representation of the event-
streams. Finally, the 3D-Graphs are taken as the inputs to
train GCN for event-based gait recognition.

3.1.1 From Asynchronous Event-stream to 3D-Graph

Unlike the conventional CMOS/CCD cameras which pro-
duce synchronized frames at fixed rate, dynamic vision
sensors (DVS) are a class of neuromorphic devices that
can capture microsecond level pixel intensity changes as
“events”, asynchronously at the time they occur. Therefore
they are often referred to as the “event cameras”, whose out-
put can be described as a stream of quadruplet, (t, x, y, p),
where t is the timestamp of an event happens, (x, y) is the
location of the event in the 2D pixel space, and p is the
polarity. Without loss of generality, we often use p = +1 to
denote the increase in pixel intensity and -1 as decrease. In
practice, the DVS sensors only report such an event when
the intensity change at a pixel exceeds certain threshold, i.e.,

|log (Ix,ynow)− log
(
Ix,yprevious

)
| > θ (1)

where Ix,ynow and Ix,yprevious are the current and previous
intensity at the same pixel (x, y).

Fig. 1 shows an example of how the DVS sensors operate.
When an object of interest is moving in the camera field of
view, e.g. the rotating dot as in Fig. 1, rather than image
frames, the DVS sensor generates an event-stream, i.e. the
spiral-like shape in the spatio-temporal domain. The asyn-
chronous and differential nature of the DVS sensors brings
many unique benefits. For instance, they can have a very
high dynamic range (140dB vs. 60dB of standard cameras),
which allow them to work under more challenging lighting
conditions. The event-streams produced by those sensors
are at microseconds temporal resolution, which effectively
captures details of the high speed motion. In addition, they
are extremely power efficient, consuming approximately 150
times less energy than standard cameras, and have very low
bandwidth requirement.

3.1.1.1 Nonuniform OctreeGrid Filtering for
Event-Stream Downsampling: The upper-left part of Fig-
ure 2 shows an example of event-stream produced by hu-
man gait consisting of N asynchronously generated events.
As N can be as large as tens of thousands to hundreds
of thousands for just few seconds (3s-4s for our dataset),
constructing graphs from raw event-stream directly is sim-
ply infeasible for computing and training consideration: the
number of edges connecting neighboring events can even
be order of magnitudes of the number of events. To reduce
computational and training cost, we apply nonuniform Oc-
treeGrid filtering algorithm [45], [46] to reduce the number
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Fig. 2: Workflow of EV-Gait-Graph3D.

of events from N to M (where M � N ) while the spatio-
temporal structure of the original event-stream can still be
well-preserved (see the example of downsampled event-
stream on the upper-left of Figure 2). As its name suggests,
the downsampling algorithm creates M nonuniform spatio-
temporal grids according to the local density of the event-
stream and randomly pick an event from the grid as a rep-
resentative. MaxNumEvents is the parameter to determine
the maximum number of points in each leaf node (or grid)
when building the structure of octree, therefore, controls the
downsampling rate.

3.1.1.2 3D-Graph Construction: After the event-
stream is downsampled, the remaining events are re-
garded as vertices or nodes of a graph. A 3D-Graph is
then constructed by connecting neighboring nodes with
bi-directional edges. Two nodes vi = (xi, yi, ti, pi) and
vj = (xj , yj , tj , pj) are neighbors if their predefined dis-
tance is less than the threshold of radius R:

√
(xi − xj)2 + (yi − yj)2 + α(ti − tj)2 < R (2)

where α is a scaling factor to tune the difference between
temporal and spatial resolution of the event-streams. A
connected 3D-Graph is represented as G=(V, E, P) where
V are the set of vertices and E are the set of the edges. The
set of the polarity P are regarded as the input feature set
for the graph-based convolution in the next step. After the
connectivity of the 3D-Graph is determined, the adjacency
matrix A of the graph can be generated whose element Ai,j

equals to 1 if nodes vi and vj are connected otherwise it
equals to 0. In GCN, the elements on the diagonal of the
adjacency matrix are also set to 1s to include the features of
the center nodes when aggregating its neighbors.

3.1.2 GCN-based Deep Recognition Network
After the event-streams are downsampled and transformed
to 3D-Graphs, we design a GCN-based deep recognition
network for extracting features and recognizing human
gaits. The key components of the network include Gaussian
Mixture Model (GMM)-based graph convolution, Graph
Residual Network, graph clustering and MaxPooling which
are shown in lower part of Figure 2.

3.1.2.1 GMM-based Graph Convolution: Spatial-
based convolution operation aggregates feature vectors
among neighboring nodes by convolving with learned
weights matrices to output a P-dimensional feature vector
f ′. The GMM-based convolution centered at node vx can be
expressed as weighted summation of J Gaussian kernels,

f ′d =
K∑

k=1

∑
y∈N (x)

gkw
p
k(u(x, y))f(y) p = 1, 2, 3, ..., P (3)

where f ′p is one entry of the P-dimensional output fea-
ture vector. gk is the weight associated to the kth Gaussian
kernel and f(y) is the feature vector of node vy . N (x)
are the collection of the neighbors of the node vx. The
learnable weighting function wp

k(u(x, y)) is defined on the
pseudo-coordinates u(x, y) for aggregating feature vectors
of the neighboring nodes. One of the key design factors
of the graph-based convolutions is the choice of weighting
functions or kernel functions such as B-spline kernels [33]
and Gaussian Mixture Model (GMM)-based kernels [34]. In
this paper, we choose GMM-based kernel for convolution
operations. Specifically, GMM-based convolution adopts K
Gaussian models as the kernel functions and the weighting
function of the kth Gaussian model can be written as:

wk(u) = exp

(
−1

2
(u− µk)

>
Σ−1k (u− µk)

)
(4)
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where Σ−1k is the covariance matrix and the µk is the
mean vector of the kth Gaussian model. We denote the ker-
nel size (number of Gaussian models) as K in the following
manuscript.

The choice of the pseudo-coordinates is another impor-
tant design factor for graph-based convolutions. In this
paper, we use relative Cartesian coordinates in three di-
mensions (x, y, t) to estimate the relative position between
neighbors so that both the spatial and temporal information
can be extracted from the 3D-Graphs through GMM-based
convolution.

3.1.2.2 Graph-ResNet: The Graph-ResNet layer of
the GCN-based deep recognition network is designed ac-
cording to the approach proposed in [27]. The major differ-
ence is the choice of the kernels and definition of the kernel
size when operating graph convolution. Graph-ResNet is
believed to be able to address the gradient degradation issue
when the network depth goes deep. Lower-left of Figure 2
shows an example of the Graph-ResNet using GMM-based
convolution. The kernel size K1 in our Graph-ResNet is the
number of Gaussian Models used for graph-based convo-
lution (refer to Equation 4). Batch normalization (BN) is
applied after each GMM-based convolution operation and
a shortcut connection is added with kernel size K2 = 1.
As the results of our evaluation, the Graph-ResNet brings
significant improvement on the recognition accuracy when
incorporated in our GCN-based deep recognition network.

3.1.2.3 Graph Nodes Clustering and MaxPooling:
Graph nodes clustering and MaxPooling strategy [47] is
another important component in our approach. It is applied
to reduce the complexity and alleviate the issue of over-
fitting of when the network goes deep. MaxPooling aggre-
gates feature vectors of the nodes in the same cluster to
obtain the abstract representation so that the dense graph
is transformed to a coarsen graph. The clusters are formed
by evenly dividing the spatio-temporal space into 3D grids
with size d (number of pixels) in each dimension, which is
also known as pooling size. The nodes falling into the same
grid will be merged together via MaxPooling. MaxPooling
picks up the maximum value from dimension of the feature
vectors of the nodes clustered together as the representation
of the corresponding node in the graph of the next layer.
If the size of the spatio-temporal space in three dimensions
is D1, D2, D3 respectively, the maximum number of nodes
after MaxPooling will be

⌈
D1

d

⌉
×
⌈
D2

d

⌉
×
⌈
D3

d

⌉
.

3.1.2.4 Detailed Network Architecture: With the
key components introduced above, We design a GCN-based
deep recognition network for identifying gait from event-
streams. The 3D-Graphs constructed from event-streams
are taken as inputs to train the network. It starts with
convolving the input graphs with a GMM-based Graph-
ConvNet, GC0(5,64), whose kernel size is 5 and output
feature size is 64. A MaxPooling layer, MP0(4), with grid
size 4 is applied to merge the graph nodes from the
first Graph-ConvNet layer. Then three Graph-ResNet lay-
ers, GRes1(5,1,128), GRes1(5,1,256) and GRes1(5,1,512) with
K1 = 5 and K2 = 1 are stacked sequentially whose output
feature sizes are 128, 256 and 512 respectively. The resultant
activations of ReLu [48] functions from each Graph-ResNet
are passed to MaxPooling layers with pooling size d = 6,

d = 24 and d = 64 respectively. At last, a fully-connected
layer with 1024 nodes (FC(1024)) is connected to the last
MaxPooling layer and softmax functions are used for ob-
taining the final recognition results. The detailed parameter
settings of the network layers in sequence are GC0(5, 64)-
MP0(4)- GRes1(5, 1, 128)- MP1(6)- GRes2(5, 1, 256)- MP2(24)-
GRes3(5, 1, 512)- MP3(64)- FC(1024).

3.2 EV-Gait-IMG

Different from GCN-based gait recognition approach, EV-
Gait-IMG utilizes image-like representation and CNN-based
deep recognition networks (it was first introduced in our
previous work published on CVPR in 2019 [49]). As shown
in Figure 3(a), Ev-Gait-IMG starts from capturing asyn-
chronous raw event-stream while the subject is walking
through the view. Then the raw event-stream is prepro-
cessed and represented according to the design of the input
layer of the EV-Gait-IMG. Finally, we train our CNN-based
deep network and apply it to recognize the identities of the
subjects based on event-streams.

3.2.1 Image-like Representation
Image-like representation of asynchronous event-streams
was proposed in [50] which can be directly fitted into state-
of-the-art CNN-based structure. Event-streams are con-
verted to image-like representation with four channels,
known as event image, for our deep neural networks. The
first two channels accommodate the counts of positive or
negative events at each pixel respectively. These heatmap-
like distributions can effectively describe the spatial charac-
teristics of the event-stream. Then the other two channels
are constructed from the timestamps of the positive and
negative events respectively. They hold the ratios describing
the temporal characteristics. The ratio ri,j at pixel (i, j) is
defined as,

ri,j =
ti,j − tbegin
tend − tbegin

(5)

ti,j is the timestamp of the most recent positive (negative)
event at pixel (i, j), tbegin is the timestamp of the first positive
(negative) event and tend is the last positive (negative) event
of the whole stream. These ratios estimate the lifetime of
object of interest at different locations.

After the above processes, the event-streams are repre-
sented as event images ready for training the deep neural
network.

3.2.2 CNN-based Deep Recognition Network
Our deep neural network for event-based gait recognition
can be vastly divided into two major components: convo-
lutional layers with Residual Block (ResBlock) layers are
responsible for feature extraction and fully-connected layers
with softmax associate the features to different identities.
The convolutional layers have been proved an effective way
to extract features and popularly applied in image classifica-
tion tasks [51], [52], [53]. The ResBlock layers [54] are able to
deal with the vanishing gradient problem when the network
goes deeper so that features extracted by convolutional
layers can be better integrated. The fully-connected layers
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Fig. 3: Network architecture of the proposed EV-Gait.

decode the features and pass them to the softmax functions
to execute classification tasks.

The detailed design of our network is shown in Fig-
ure 3(b). It starts from a special input layer to accommodate
the event images presented in Section 3.2.1. The input image
is passed through four convolutional layers whose filter size
is 3×3 and stride is 2. The number of channels of the four
convolutional layers are 64, 128, 256 and 512 respectively.
After the convolutional layers, the resultant activations of
the ReLu [48] functions are passed through two ResBlock
layers to deal with the vanishing gradient problem and
keep the features extracted from lower layers when our
network goes deeper. The two ResBlock layers share the
same parameters: the filter size is 3×3, the stride is 1 and
the number of channels are 512. Then, two fully-connected
layers with 1024 and 512 nodes respectively are connected
to the ResBlock layers and softmax functions are stacked to
finalize the whole network. Finally, the cross entropy loss
function and Adam optimizer [55] are adopted to train the
network.

4 EVALUATION

In this section, we evaluate our proposed event-based hu-
man gait recognition approaches, EV-Gait-3DGraph and EV-
Gait-IMG, on both data collected in real-world experiments
and converted from publicly available RGB gait databases.
In our experiments, we use a DVS128 Dynamic Vision
Sensor from iniVation [56] operating at 128×128 pixel res-
olution. The event data is streamed to and processed on a
desktop machine with Intel i9-9980Xe CPU and 128G DDR4

Ram running Ubuntu 16.04, and the deep networks (dis-
cussed in Section 3) are trained on two NVIDIA RTX Titan
GPUs. In the following, we first evaluate performance of EV-
Gait-3DGraph and EV-Gait-IMG with different parameter
choices in Section 4.2 and Section 4.3, and then compare our
proposed approaches to a number of existing event-based
recognition methods in Section 4.4. Finally, the performance
of the proposed approaches are benchmarked with RGB-
based approaches in Section 4.5.

4.1 Realworld Dataset Collection and Implementation
Details

We recruited a total number of 20 volunteers (14 males and 6
females) to contribute their data in two experiment sessions
spanning over three weeks. In each session, the participants
were asked to walk normally in front of a DVS128 sensor
mounted on a tripod, and repeat walking for 100 times. The
sensor viewing angle is set to approximately 90 degrees with
respect to the walking directions. The second experiment
sessions were conducted after at least one week after the
previous sessions. We did not specify the distance between
the walking subject and the device so that the position and
scale of the human figures shown in the streams could be
different. This setting introduces practical variance which is
challenging for the methods sensitive to object alignment.In
total we collected 4,000 samples of event streams capturing
gait of the 20 volunteers. As the dataset is collected during
daytime, it is named as DVS128-Gait-Day. Fig. 4 shows
visualization of the data from 4 different identities (events
accumulated within 20ms), where the color of pixels indicate
polarity (red for +1, green for -1). We also collected another
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Fig. 4: Visualization of the event streams (accumulated over
20ms) of 10 different identities in the DVS128-Gait-Day
dataset.

dataset at night without dedicated illumination to specifi-
cally evaluate the performance of EV-Gait under challenging
lighting condition, which will be specified in Section 4.4.4.

We implement the proposed deep network in EV-Gait
(discussed in Section 3) with PyTorch [57]. The dataset
DVS128-Gait-Day is used to determine the parameters of
the proposed deep networks. The data collected in the first
session (100 samples per subject) is used for training, while
for testing we use data from the second session (100 samples
per subject). During training we set the batch size as 16
for both of the proposed methods and the learning rate
for EV-Gait-3DGraph and EV-Gait-IMG is 1e-3 and 3e-7
respectively. Both training and testing were performed on
a cluster of two NVIDIA RTX Titan GPU.

4.2 Parameter Choice of EV-Gait-3DGraph
To determine appropriate parameter settings of EV-Gait-
3DGraph, we evaluate the recognition accuracy of the
proposed method by varying the values of a number of
different parameters including MaxNumEvents, neighbor-
ing range, last pooling size, convolution kernel size, the
influence of Graph-ResNet and complexity of the network
architecture. When evaluating one of the parameters, the
other parameters remain unchanged at their default values
which will be justified in each corresponding sections below.

4.2.1 Evaluation on MaxNumEvents

MaxNumEvent 80 60 40 20
Accuracy 87.2±1.1% 89.0±1.3% 93.8±0.8% 89.5±1.6%

Remaining Events 1001 1162 1994 3965

TABLE 1: Recognition accuracy and number of remaining
events after downsampling with different values of MaxNu-
mEvents.

As introduced in Section 3.1.1, the maximum number of
events (MaxNumEvents) of each grid determines the rate of
compression when downsampling the event-streams using
nonuniform OctreeGrid filtering. We gradually reduce the
MaxNumEvents from 80 to 20 and compute corresponding
recognition accuracy of EV-Gait-3DGraph by repeating in-
dependent training and testing trials by 30 times. For each
trial, the samples collected from the first session are used
for training and those collected from the second session are
for testing. The resultant average and standard deviation
of the recognition accuracy and the number of remaining
events of each event-stream after downsampling is shown

in Table 1. From the results we can observe, the recog-
nition accuracy is improved from 87.2% to 93.8% when
MaxNumEvents decreases from 80 to 40 and the averaged
number of remaining events 3D-Graph grows from 1001
to 1994. Then the accuracy significantly drops to 89.5%
when the MaxNumEvents is further reduced to 20 and
the corresponding number of remaining events are close to
4000. Therefore, the default value of the MaxNumEvents is
chosen as 40. The improvement of accuracy at the beginning
is derived from the information gain brought by the growth
of the number of remaining events. However, the model
complexity becomes the major issue when excessive events
are included in graph construction which causes accuracy
drop afterwards.

4.2.2 Evaluation on Neighboring Range

Neighboring range 3 4 5 6
Accuracy 87.3±0.7% 92.1±1.0% 93.8±0.8% 89.5±1.6%

Number of edges 1573 3660 6318 10016

TABLE 2: Recognition accuracy and number of edges of EV-
Gait-3DGraph with different neighboring range.

We then evaluate the recognition accuracy of EV-Gait-
3DGraph with various neighboring ranges (R). As the
neighboring range determines the connectivity of the 3D-
Graphs, the number of edges of each event-stream are
also calculated. Table 2 presents the average and standard
deviation of the recognition accuracy over 30 repeated
experiments and the average number of edges of the 3D-
Graphs. By analyzing the results we can see that the recog-
nition accuracy improves significantly when neighboring
range grows from 3 to 5 because local feature extraction is
enhanced when more edges are generated to connect more
nodes. However, in the meantime, the model complexity
also grows significantly with the growth of the number of
edges, which affects the performance of the deep neural
networks, e.g., the recognition accuracy drops to 89.5%
when the neighboring range is 6. Therefore, R = 5 is chosen
as the default value for the neighboring range.

4.2.3 Evaluation on Kernel Size

Kernel
Size

No
ResNet K=3 K=4 K=5 K=6

Accuracy 90.5±0.9% 92.9±0.9% 92.5±1.4% 93.8±0.8% 92.9±1.4%

TABLE 3: Recognition accuracy of EV-Gait-3DGraph with
different sizes of convolution kernel and the impact of
Graph-ResNet.

In this part of evaluation, we estimate the recognition
accuracy of EV-Gait-3DGraph with different settings for
GMM-based convolution. Again, the recognition accuracy
presented in Table 3 is obtained from averaging the results
of 30 repeated trials. By comparing the recognition accuracy
of EV-Gait-3DGraph with or without Graph-ResNet, we find
the Graph-ResNet in GCN is able to improve the recognition
accuracy by up to 3.3% (93.8% v.s. 90.5% ). Then, we
investigate the recognition accuracy of EV-Gait-3DGraph
with respect to different sizes of convolution K. The results
show the recognition accuracy peaks at K = 5. Therefore,
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K = 5 is chosen as the default kernel size for GMM-based
convolution.

4.2.4 Evaluation on Pooling Size

Pooling size 16 32 64 128
Accuracy 86.1±1.5% 89.1±1.1% 93.8±0.8% 94.9±1.5%

Number of grids 512 64 8 1

TABLE 4: Recognition accuracy and number of grids of
EV-Gait-3DGraph with different pooling size of the last
MaxPooling layer.

When tuning the design factors of the graph-based deep
recognition network, we find the change of the pooling size
of the last MaxPooling layer has significant impact on the
recognition accuracy of EV-Gait-3DGraph. We again retrain
the model and report the averaged recognition accuracy
over 30 independent trials in Table 4. The pooling size at
the last MaxPooling varies from 16 to 128 and results in 512
to 1 nodes at the last layer. From the results we see that
as higher pooling size at the last MaxPooling is applied,
the recognition accuracy increases and the highest accuracy
(94.5%) is achieved when the pooling size is 128. However,
by carefully investigating the specific results of each trials,
we find the recognition accuracy is not stable when pooling
size is 128 because of the limited feature space (512). The
graph is merged into only one node and it may not be
able handle larger number of subjects. Therefore, we set the
default pooling size of the last MaxPooling layer as 64 which
aggregates the graph into 8 nodes at last.

4.2.5 Evaluation on Number of Layers
At last, we investigate influence of the network complexity
on the recognition accuracy by removing one the of Graph-
ResNet layers(along with the associated MaxPooling layer).
We retrain the simplified models and report the average and
standard deviation of the accuracy obtained from 30 inde-
pendent training and inference trials in Table 5. Compared
with the original accuracy (last column), we can observe
removing one of the graph-based convolutional layers will
lead to significant accuracy drop by at least 5%).

Operation Remove
ResGC0

Remove
ResGC1

Remove
ResGC2

Remove
ResGC3 Original

Accuracy 83.9±1.8% 82.0±2.4% 88.9±1.3% 88.0±1.4% 93.8±0.8%

TABLE 5: The impact on recognition accuracy when remov-
ing one of the Graph-based convolution layers.

4.3 Parameter Choice of EV-Gait-IMG
We now evaluate the recognition accuracy of EV-Gait-IMG
with different parameter settings, including the setup of the
input representation, the use of ResBlocks, size of the convo-
lution kernels and complexity of the network architecture.

4.3.1 Evaluation on the Setup of Representation
The image-like representation proposed in [50] converts
the asynchronous event-streams to event-image with four
channels: two channels accommodate the counts of positive
or negative events at each pixel and the other two channels

account for the temporal characteristics. In this section, we
will evaluate four different setups of the representation to
determine the importance of each type of channel:
• All Channels. All four channels are considered, which

is the original setup of the image-like representation.
• Counts Only. Only the two channels accommodating

the counts of positive or negative events are kept.
• Time Only. Only the two channels holding temporal

characteristics are kept.
• No Polarity. The polarity of the events is removed.

Channel All Counts Time None
Setup Channels Only Only Polarity

Accuracy 86.6±0.4% 87.3±0.9% 52.3±2.5% 86.0±1.2%

TABLE 6: Recognition accuracy of EV-Gait-IMG with differ-
ent representation setups.

The average and standard deviation of recognition ac-
curacy of each representation setup is computed from 30
repeated experiments and is in Table 6. From the results, we
can see, the channels holding the event-distribution charac-
teristics only (counts of events) produce significantly higher
accuracy than those holding the temporal characteristics
only (87.3% v.s. 52.3%) and including temporal channels
cannot guarantee better performance (86.6%).

4.3.2 Evaluation on ResBlocks

Kernel
Size

No
ResBlock K=2 K=3 K=4 K=5

Accuracy 85.8±0.5% 86.4±0.7% 87.3±0.9% 86.6±0.6% 86.9±0.5%

TABLE 7: Recognition accuracy of EV-Gait-IMG with differ-
ent convolution kernel sizes

In this section, we evaluate the impact of the ResBlock
on the recognition accuracy of EV-Gait-IMG when different
convolution kernel sizes are applied. We repeat the training
and inference process 30 times for each kernel size and
compute their average and standard deviation of recog-
nition accuracy. The simplified network structure without
ResBlock components is also considered in this part of
evaluation. From the results shown in Table 7, we can find
the ResBlocks are able to improve the recognition accuracy
by up to 1.5% (87.3% v.s. 85.8%) and the change of kernel
size only has trivial impact on the recognition accuracy.

4.3.3 Evaluation on Number of Layers

Operation Remove
one FC layer

Remove
one ResBlock

Remove
one ConvNet Original

Accuracy 87.0±0.9% 85.2±0.9% 85.5±0.9% 87.3±0.9%

TABLE 8: The impact on recognition accuracy when remov-
ing one of the FC/ convolution/Resblock layers.

We also study the impact of the network complexity
of EV-Gait-IMG on the recognition accuracy by removing
different types of layers. We remove one of the FC, ResBlock
or ConvNet layers to form the simplified models. Then the
new models are retrained and the corresponding accuracy
is reported in Table 8. From the results we can observe, our
original network achieves the highest recognition accuracy
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and one of the FC layers can be removed when implemented
on the resource-constrained platform as it only brings trivial
impact on the accuracy.

4.4 Comparison with Different EV-based Methods

Finally, we compare the recognition accuracy of different
EV-based deep recognition networks with either graph-
based or image-like representations. We also include sup-
portive vector machine (SVM) as a benchmark to deter-
mine if deep neural networks are necessary for the EV-
based gait recognition task. Besides EV-Gait-3DGraph and
EV-Gait-IMG proposed in this paper, the other competing
approaches are as follows:
2DGraph-3DCNN [28] was proposed to extract the spatio-
temporal feature from event-streams. It splits each event-
stream into multiple slices over time. For each slice, a very
short-term of period (e.g., 30ms) is picked to construct a
2D-Graph and spatial features are extracted through graph-
based convolution with a B-spline kernel [33]. Then the
2D-Graphs are transferred to a grid representation through
Graph2Grid operations [28]. Finally, 3DCNN [58] is applied
to extract the spatio-temporal features for actions recog-
nition. We optimize the network structure of 2DGraph-
3DCNN for the gait recognition task, and the final detailed
network settings are GC0(5, 64) - MP0(2) - GC1(5, 128)
- MP1(4) - Graph2Grid(8, 32, 128) - 3DConv0(3, 128) -
3DMP0(2) - 3DConv1(3, 256) - 3DMP1(2) - 3DConv2(3, 512) -
3DMP2(2) - 3DConv3(3, 512) - 3DMP3(2) - GA(512) - FC(256)
- Dropout(0.5). GC(5, 64) is a graph-based convolution with
kernel size 5 and output feature size 64. MP(2) and 3DMP(2)
are two or three dimensional MaxPooling layer with pooling
size 2 for each dimension. Graph2Grid(8, 32, 128) converts
a stack of graphs constructed from 8 slices of event-stream
to eight 32×32 matrices and the output feature size (depth)
is 128. 3DConv(3, 512) is 3D-convolution layer with kernel
size 3 and output feature size 512. GA(512) merges multiple
features from previous layer into a one-dimensional global
feature. Finally, FC(256) is fully-connected layer with 256
nodes and Dropout(0.5) randomly throws half of the coeffi-
cients to alleviate the problem of overfitting.
LSTM-CNN is based on EV-Gait-IMG but considers the
variance of human gait through time. It splits the whole
event-stream into multiple slices and we set the number of
slices as 8 which produces the highest accuracy. Each short-
term slice is converted to the image-like representation.
The CNN-based network inheriting from EV-Gait-IMG is
applied to extract spatial feature from each slice. Then the
sequence of feature vectors are taken as the input of a Long
Short-Time Memory (LSTM) network with 100 hidden states
to recognize gaits from the event-streams.
SVM-PCA is a benchmark method to determine if the deep
neural networks are necessary for our EV-based gait recog-
nition task. SVM-PCA adopts the same event images as EV-
Gait-IMG and concatenates the event images by columns
to form high-dimensional vectors. Principal Component
Analysis (PCA) is applied on the high-dimensional vectors
to extract features (we set the output dimension of PCA as
500) to train SVM-based classifier for gait recognition.

4.4.1 Comparison on Best Accuracy
We compute the average and standard deviation of the
recognition accuracy of the five competing approaches over
30 independent training and inference trials. The parame-
ters of the five approaches are all carefully tuned and the
best averaged accuracy is reported in Table 9. The results
show that, the two approaches with graph-based represen-
tations achieves significantly higher recognition accuracy
than those with image-like representations and the gap is
up to 8.4% (94.9% v.s. 86.5%). By further comparing the two
graph-based approaches, we find the 3D-Graph representa-
tion produces higher recognition accuracy than 2D-Graph as
it can better preserve the spatio-temporal information of the
asynchronous event-streams than a sequence of discrete 2D-
Graphs in a human gait recognition task. It is worth noting
that, the accuracy of SVM-based classifier cannot compete
with the four deep learning approaches and the difference
is up to 16.5%.

Methods EV-Gait
-3DGraph

2DGraph
-3DCNN

EV-Gait
-IMG

LSTM
-CNN

SVM
-PCA

Accuracy 94.9±1.5% 92.2±2.1% 87.3±0.9% 86.5±0.8% 78.05%

TABLE 9: Recognition accuracy of different EV-based gait
recognition approaches.

There are a number of reasons that 3D-Graph repre-
sentation generates the highest recognition accuracy among
the competing approaches for event-based gait recognition.
First, image-like representations suffer from misalignment
and noisy background issues, the recognition accuracy can-
not be guaranteed if the distance between the walking
subject and the camera is not well-controlled, which leads
to various scales of the recorded subject. However, event-
stream alignment is challenging and still remains unsolved.
On the contrary, graph-based representation focuses on
the moving subject in the view directly, therefore allevi-
ates the influence of misalignment and background noises.
2DGraph-3DCNN employs 2D-Graphs for spatial feature
extraction, however, the 3DCNN component requires care-
ful alignment when mapping the 2D-Graphs to grid rep-
resentation. Finally, 2DGraph-3DCNN converts the event-
stream to discrete 2D-Graphs by picking up very short-term
period from the slices of event-stream and the information
in between is discarded. While EV-Gait-3DGraph takes the
whole event-stream as an entirety and preserves most of the
shape when constructing the 3D-Graph.

4.4.2 Comparison on Number of Training Samples
We then compare the recognition accuracy of the event-
based approaches with respect of the amount of training
samples per subject. The amount of samples per subject
required for training is important as few shot learning can
save significant training efforts especially when registering
new subjects. It has significant impact on user experience. In
particular, we randomly select different number of training
samples from each subject, varying from 5 to 100. For each
case, we retrain all the four event-based approaches for 30
times and report the average and standard deviation of
recognition accuracy. Table 10 shows the results, and we see
that as more samples are used in training, the recognition
accuracy of all approaches grows, but with different growth
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rates. By comparing the results across different approaches,
EV-Gait-IMG produces significantly higher recognition ac-
curacy than graph-based approaches when number of train-
ing samples is low and becomes almost level after 10 or
more training samples are used. The accuracy of EV-Gait-
3DGraph surpasses other approaches when sufficient train-
ing samples (over 50 in the table) are used. This indicates
that EV-Gait-IMG doesn’t require massive training data to
converge so the image-like representation is the choice when
only limited number of training samples are available. In
contrast, EV-Gait-3DGraph shows significantly higher per-
formance cap than those using image-like representation,
therefore, is more preferable when sufficient training data
could be sourced.

Samples\Methods EV-Gait
-3DGraph

2DGraph
-3DCNN

EV-Gait
-IMG

LSTM
-CNN

5 Samples 36.3±2.2% 6.1±1.3% 79.9±2.0% 33.1±6.3%
10 Samples 61.7±4.1% 14.5±2.7% 85.9±1.8% 57.6±8.6%
20 Samples 78.6±1.1% 48.2±7.3% 86.5±0.7% 76.0±4.2%
50 Samples 90.0±1.2% 82.9±3.2% 87.2±0.8% 85.5%±1.4
100 Samples 94.9±1.5% 92.2±2.1% 87.3±0.9% 86.5±0.8%

TABLE 10: The recognition accuracy of EV-based deep
recognition networks with different number of training
samples per subject (highest accuracy in each line is high-
lighted).

4.4.3 Comparison on Length of Event-stream
In EV-based gait recognition, the event-streams are gen-
erated while the subjects are walking. The subjects are
different from their figures and pattern of walking. In this
section, we evaluate the recognition accuracy on different
length of event-streams to show that the gait (walking pat-
tern) plays a significant role in subject identification using
event camera. We split each long event-stream into multiple
slices according to predefined length of time from 50ms to
1500ms. The slices with the same length are gathered for
training and inference with EV-Gait-3DGraph and EV-Gait-
IMG. The average and standard deviation of recognition
accuracy on different length of event-streams is reported
in Table 11. From the results we can find, the recognition
accuracy of the both approaches increases with the growth
of the length. Specifically, when the length of the event-
streams is short (where the “gait” cannot be well observed),
the recognition accuracy is much lower than that with full
length event-streams. The comparison indicates the “gait”
plays significant role in recognizing the walking subjects.

Length \Methods EV-Gait-3DGraph EV-Gait-IMG
50ms 14.4±0.5% 41.8±1.5%
100ms 26.1±0.6% 55.8±0.8%
200ms 38.5±0.7% 56.5±1.1%
500 ms 67.4±1.3% 59.6±2.6%
1000ms 82.1±0.8% 63.4±2.7%
1500ms 86.0±1.8% 76.6±1.9%

full length 94.9±1.5% 87.3±0.9%

TABLE 11: The recognition accuracy of event-based deep
recognition networks with different length of event-streams.

4.4.4 Comparison on Different Lighting Conditions
To investigate if the event camera is able to capture hu-
man gaits in low-light condition, we collected the dataset

DVS128-Gait-Night during night without dedicated light-
ing. We again recruited 20 volunteers for data collection
and each volunteer contributed 200 samples of gait in front
of event camera. We evaluate recognition accuracy of the
EV-Gait-3DGraph and EV-Gait-IMG on DVS128-Gait-Night
and include the results from daytime dataset as benchmark
to demonstrate their performance in low-light condition.
When computing the recognition accuracy, half of the sam-
ples are randomly selected for training and the rest for
testing. The results shown in Table 12 are average and
standard deviation of the results from 30 independent trials
in which the training and testing samples are re-selected
randomly. From the results we can observe, dataset collected
from low-light condition is more challenging than that from
daytime and the recognition accuracy of EV-Gait-3DGraph
and EV-Gait-IMG drops by 3.7% and 24.6% respectively.
Meanwhile, EV-Gait-3DGraph demonstrates significantly
superior performance than EV-Gait-IMG and the difference
is over 24% on low-light dataset.

Light\Methods EV-Gait-3DGraph EV-Gait-IMG
Daytime 99.7±0.1% 96.1±0.4%

Nighttime 96.0±1.6% 71.5±4.3%

TABLE 12: Recognition accuracy of EV-Gait on datasets
collected from different lighting conditions.

4.4.5 Comparison of Resources Consumption
Apart from the recognition accuracy, the resources con-
sumption of the EV-Gait approaches are also important for
practical use. We implement both EV-Gait-3DGraph and EV-
Gait-IMG on Intel UP Board [59] with a Quad-core 1.44Ghz
Intel Atom x5-Z8350 microprocessor on board. The RAM
of the board is 1G and ROM is 16G. The operating sys-
tem is Ubuntu 16.04. After implementation, we profile the
resources consumption of the total number of coefficients,
averaged inference time, memory usage and energy con-
sumption of the proposed EV-Gait approaches. The number
of coefficients can be conveniently obtained from Pytorch
API. Average inference time and memory usage can be
drawn from the system when running the programs. We use
external tool to monitor the power consumption (current
and voltage) of the board when running the inference of
different EV-Gait approaches.

Methods EV-Gait-3DGraph EV-Gait-IMG
Number of Coefficients 7.15 M 64.61 M
Average Inference Time 436.23 ms 238.43 ms

Memory Usage 410.87 Mbytes 413.05 Mbytes
Energy Consumption 0.876 J 0.238 J

TABLE 13: Resources consumption of EV-Gait on UP board.

The resources consumption of gait recognition on UP
board are shown in Table 13. First of all, the average in-
ference time is acceptable on the resource-constrained plat-
form; the inference can made within half second with the
slower approach (EV-Gait-3DGraph). Then by comparing
the resources consumption of different EV-Gait approaches,
we can observe the number of coefficients of GCN-based ap-
proach is only about one ninth of CNN-based approach (7.15
million v.s. 64.61 million), however, it requires almost the
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same running memory (410.87Mbytes v.s. 413.05Mbytes),
1.8 times inference time and 3.7 times energy consumption
compared with CNN-based approach. Our conjecture is
because the graph-based convolution is based on an ex-
tension library for Pytorch (Pytorch Geometric [60]) which
is implemented by third-party and not well optimized.
Therefore, we can claim that, with the popularity of GCNs,
the resources consumption of the GCN-based approach can
be significantly reduced when proper optimization on the
implementation of graph convolution are available in the
future.

4.5 Comparison with RGB-based Benchmarks

Fig. 5: Examples from the original CASIA-B dataset (top
row) and visualization of the corresponding event streams
(accumulated over 20ms) in our converted EV-CASIA-B
dataset (bottom row).

We have showed that event-based approaches perform
well in data collected from real-world settings, and we now
show that it could also achieve comparable performance
with the state-of-the-art gait recognition approaches that
are designed for RGB images. Since those approaches do
not work on event-streams, for fair comparison, we convert
the widely used CASIA-B [61] benchmark into its event
version EV-CASIA-B. Then we run event-based approaches
on the converted EV-CASIA-B dataset, and compare the
resulting recognition accuracy with that of the state-of-the-
art approaches on the original CASIA-B dataset.

4.5.1 Data Collection and Implementation Details
CASIA-B is one of the most popular benchmark for RGB
camera-based gait recognition methods [62], [63], [64], [65].
It contains data from 124 subjects, each of which has 66
video clips recorded by RGB camera from 11 different view
angles (0◦ to 180◦), i.e., 6 clips for each angle. The view angle
is the relative angle between the view of the camera and
walking direction of the subjects. To convert the CASIA-B
dataset to event format, we use a similar approach as in [66]
and use a DVS128 sensor to record the playbacks of the
video clips on screen. In particular, we use a Dell 23 inch
monitor with resolution 1920×1080 at 60Hz. Fig. 5 shows
some examples from the original CASIA-B dataset (top row)
and the visualization of the corresponding event streams in
our converted EV-CASIA-B dataset.

We consider the same deep network structure as in the
previous experiments on the DVS128-Gait-Day dataset. For
training, we use the data of the first 74 subjects to pre-
train the network. Then for the other 50 subjects, for each
viewing angle we use the first 4 out of 6 clips to fine-tune

the network, and the rest 2 clips are used for testing. We
implement two competing approaches that work on RGB
images: i) 3D-CNN [18] and ii) Ensemble-CNN [18], which
can achieve state-of-the-art gait recognition performance on
the original CASIA-B benchmark.

4.5.2 Evaluation on Different View Angles

Table 14 shows the gait recognition accuracy of the proposed
EV-Gait-3DGraph and EV-Gait-IMG with the competing ap-
proaches 3D-CNN and Ensemble-CNN. It is worth pointing
out that the frame rate of the video clips in CASIA-B dataset
is only 25 FPS, with a low resolution at 320×240. As a result
when converting such data into event format via playback
on the screen, the DVS sensor will inevitably pick up lots
of noise. In addition, unlike the original RGB data, the
event-streams inherently contain much less information (see
Fig. 5). However, as we can see from Table 14, the proposed
EV-Gait-IMG can still achieve comparable gait recognition
accuracy (89.9%) with the competing RGB camera based
approaches overall (94.1%). For some viewing angles, es-
pecially when the walking directions of the subjects are
perpendicular with the camera optical axis (e.g. around 90◦),
the proposed EV-Gait-IMG even outperforms the state-of-
the-art 3D-CNN and Ensemble-CNN (96.2% vs. 88.3% and
91.5%). EV-Gait-IMG achieves the highest accuracy when
the view angle is 90◦ because in such settings the event
streams captured by the DVS sensor can preserve most of
the motion features. On the other hand, for the viewing an-
gles that the subjects walk towards/away from the camera
(e.g. 0◦ or 162◦), the accuracy of EV-Gait-IMG is slightly
inferior to the RGB-based approaches. This is expected,
since in those cases compared to RGB images, the event-
streams contain fewer informative features on the subjects’
motion patterns, and thus struggle to extract their identities.
It is worth noting that the recognition accuracy of EV-Gait-
3DGraph shown in the first row of Table 14 is much worse
than any other competing approaches because only 4 video
clips per subject are used for training which is not sufficient
to obtain a well-trained model of EV-Gait-3DGraph. This
observation is consistent with our evaluation results on the
amount of training data.

5 CONCLUSION

In this paper, we investigate the optimal representa-
tion of asynchronous event-streams by proposing EV-
Gait-3DGraph and EV-Gait-IMG, new approaches for gait
recognition with 3DGraph and image-like representations
using DVS sensors. EV-Gait-3DGraph and EV-Gait-IMG
constructs either 3D-Graphs or image-like representations
from asynchronous event-streams. Then corresponding and
graph-based and CNN-based deep neural networks are
designed for recognizing gait from event-streams. We collect
multiple event-based gait datasets from both real-world
experiments and RGB-based benchmark. According to the
evaluations on the dataset collected from practical setting,
EV-Gait-3DGraph and EV-Gait-IMG achieve up to 94.9%
and 87.3% accuracy respectively when amount of training
data is sufficient for networks to converge. Finally, we evalu-
ate the event-based approaches on a dataset converted from
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Methods\Angle 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ mean
EV-Gait-3DGraph 58.6% 81.8% 92.9% 86.6% 89.2% 92.1% 89.8% 87.5% 86.7% 78.5% 60% 82.2%

EV-Gait-IMG 77.3% 89.3% 94.0% 91.8% 92.3% 96.2% 91.8% 91.8% 91.4% 87.8% 85.7% 89.9%
3D-CNN 87.1% 93.2% 97.0% 94.6% 90.2% 88.3% 91.1% 93.8% 96.5% 96% 85.7% 92.1%

Ensemble-CNN 88.7% 95.1% 98.2% 96.4% 94.1% 91.5% 93.9% 97.5% 98.4% 95.8% 85.6% 94.1%

TABLE 14: Gait recognition accuracy of EV-Gait-3DGraph, EV-Gait-IMG (evaluated on EV-CASIA-B dataset) and two
competing RGB based approaches (evaluated on CASIA-B dataset). Note that for viewing angles 72◦, 90◦ and 108◦, EV-
Gait-IMG even performs better than the RGB based approaches.

video-based gait dataset and the results are comparable with
state-of-the-art RGB-based approaches on the benchmark.
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