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a b s t r a c t 

In this paper, we present HealCam, an energy-efficient and privacy-preserving human vital signs (e.g., 

respiration cycles) monitoring system on camera-enabled smart devices. HealCam incorporates the re- 

lated theories of compressive sensing in its system to reduce the sampling rate while preserving data 

privacy. HealCam saves significant cost on video processing via low-rate and non-uniform random sam- 

pling. It also provides a privacy-preserved data collection and enquiry service via lightweight compres- 

sive encryption and decryption scheme. According to our evaluations on real datasets, HealCam achieves 

high accuracy on respiration cycles reconstruction with extremely low average frame rate, i.e., 1 FPS, via 

non-uniform random sampling compared with traditional uniform sampling strategy. Then we implement 

HealCam on smartphones to evaluate its resource consumption. The results show that, HealCam is 23.6 

times more energy efficient and 26.7 times faster than the original approach on video processing. Its 

data encryption component is 172 times faster while consumes only 1.01% energy compared with the 

corresponding state-of-the-art. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Human vital signs, e.g., respiration and heartbeat cycles, are im-

portant references for medical diagnoses and healthcare applica-

tions. These vital cycles can be monitored by the dedicated equip-

ments in hospital, e.g., an ElectroCardioGram (ECG) [1] for heart-

beat cycles monitoring. However, these equipments are expensive,

cumbersome and require special expertise to use; therefore are

not appropriate for usage in collecting daily health statistics of pa-

tients or the elderly in nursing-house, aged-care facilities or even

at home. As the vision of smart healthcare, the future of medi-

cal applications should leverage the pervasive smart devices under

different environments to provide intelligent, seamless and non-

intrusive healthcare services. Therefore, the traditional dedicated

and cumbersome equipments are not appropriate. 

Extracting the cycles of respiration and heartbeat from contin-

ues video recordings of human faces has been extensively studied

in the literature [2] and the current state-of-the-art is based on de-

tecting the subtle head motions [3] using the embedded cameras
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n high performance PCs. The video-based approaches are quite

romising as they do not require any special expertise to use and

he high-resolution on-board cameras are now pervasive on differ-

nt embedded smart devices including smartphones, Augmented

eality/Virtual Reality (AR/VR) glasses, tablets and etc. (see Fig. 1 ).

he flexibility and user experience of the video-based approaches

ill be significantly improved if implemented on the camera-

nabled smart devices. However, video processing is known to be

omputationally prohibitive for resource-constrained smart devices

nd the computational issues are ignored in previous research. 

A straightforward solution for reducing the video computation

ost on smart devices is offloading the computationally intensive

asks to the high performance computing facilities, such as lo-

al servers or remote cloud computing services [4] . However, of-

oading the video recordings of individuals’ faces is quite privacy-

ntrusive. Moreover, the extracted vital cycles themselves are sig-

ificantly private as it can be used to infer individuals’ health sta-

us. Individuals’ health related data has substantially commercial

alues and it is highly likely that it will be targeted by hackers in

he future in the same way that credit card information is now. 

In this paper, we focus on monitoring the respiration cycles and

ddressing the above issues, we propose a novel energy-efficient

nd privacy-preserving human respiration cycles monitoring sys-

em, HealCam, on camera-enabled smart devices by incorporating
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Fig. 1. Examples of camera-enabled smart devices. 
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elevant theories of compressive sensing. The contributions of this

aper are as follows, 

• In this paper, we propose HealCam for video-based human res-

piration cycles monitoring on camera-enabled smart devices. To

the best of our knowledge, this is the first relevant system run-

ning on resource-constrained devices. 

• As the minimal frame rate of uniform approach is bounded

by the theory of Nyquist frequency and noises, to reduce the

sampling rate, we propose a non-uniform random sampling

strategy inspired by compressive sensing, instead of traditional

uniform sampling to reduce the local video computation cost

on the smart devices. According to the evaluation on the real

datasets, it achieves significantly higher reconstruction accu-

racy at extremely low sampling rate compared with the uni-

form sampling strategy. 

• We incorporate a lightweight compressive encryption and de-

cryption algorithm in HealCam, based on compressive sensing,

for privacy-preserved data collection and enquiry with smart

devices. 

• At last, we implement HealCam on smartphones to evaluate

its resource consumptions. The results show that HealCam sig-

nificantly reduces the energy consumption on both local video

computing and data encryption. 

This paper is organized as followed: Section 2 gives introduc-

ion about the work related to monitoring human vital cycles

nd corresponding encryption methods. Section 3 mentions the

etail of HealCam’s system architecture. In Section 4 results of

xperiments conducted on real world dataset are given. Finally

ection 5 concludes the paper. 

. Related work 

Daily human vital cycles monitoring via smart devices has be-

ome one of the research topics with the introduction of Smart

ealth Projects [5] . Studies [6] showed that the accurate daily

ealth data enabled us to understand how our bodies were func-

ioning and could be helpful in detecting serious illnesses in early

tage. Nanotechnology and wireless communications are the most

ommon methods used in smart health applications. In [7] , a smart

hirt was designed to measure ECG and acceleration signals con-

inuously and transmitted the data to a device connected to an

d hoc network. ZigBee and mobile phones were used to measure

CG and blood glucose in [8] . In another study [9] , a sensor inte-

rated into clothing was designed to measure biochemical changes

n sweat. The study showed that the sensor had the potential to

ecord real-time variations in sweat during exercise. 

Another research mainstream is to process the video recordings

f human faces to detect the subtle changes caused by heartbeat or
reath [10] . The existing related research can be vastly divided into

wo categories: color-change based [11,12] and head-motion based

pproaches [3] . The problem of color-change based approaches are

hey suffer from the noises from environment lighting changes.

owever, the existing effort s f ocused on improving the accuracy,

hey are not applicable on resource-constrained smart devices due

o overwhelming computation from video processing. 

With the pervasive availability of high-speed network and high

erformance cloud services, the most recent research on smart de-

ices is seeking the assistance from the cloud for computation and

torage. However, the privacy issues arise when uploading users’

ata to the cloud. A number of encryption schemes [13] have

een proposed to guarantee the data security. Advanced Encryp-

ion Standard(AES) is an algorithm proposed in [14] , which con-

erts the data files from plaintext format into an incomprehensible

ormat that is called cipher text which could not be read by hu-

ans to prevent the unauthorized users from gaining access to the

ata files. Prabhakar and Joseph [15] proposed a scheme using Ad-

anced Encryption Standard with key length 256 bits(AES-256) to

rovide complete security for the data during all the stages. These

ethods could provide ample protection, however, their compu-

ation consumptions are intensive. Many other researches have

een raised to encrypt the query processing in cloud computation.

ryptDB [16] is an online encryption system that allows executing

tructured query language(SQL) queries over encrypted data using

 collection of SQL-aware encryption schemes. Talos [17] is intro-

uced by Shafagh et. al as a system that encrypts query processing

or IoT data stored in cloud with encryption keys held by users.

owever, both of the researches are not focus on energy consump-

ion and efficiency as they are designed for online applications and

loud environment respectively. 

Compressive sensing is widely adopted in the area of data col-

ection, which utilizes a sensing matrix to randomly sample and

fficiently reconstruct data. Inspired by the properties of compres-

ive sensing, instead of encrypting the raw data directly, in this

aper, we propose a new compressive sensing based encryption

cheme to preserve the privacy during query processing, which is

oth secured and lightweight. 

. System architecture 

The system architecture of HealCam can be vastly divided into

wo major stages. The first is the energy-efficient respiration cycles

xtraction and encryption; the second is privacy-preserving histor-

cal records enquiry. Specifically, in the first stage, the respiration

ycles are extracted from tracking the head motions of the target in

 continuous video stream on smartphones. Non-uniform random

ampling is applied to reduce the number of frames for further

rocessing to significantly save the video processing cost. Then to

oost the security of the collected data, random Gaussian perturba-

ion is adopted to encrypt the original data and the encrypted data

s transferred to and stored in the remote cloud or cloudlet for fu-

ure enquiry. In the second stage, the user’s client on smartphone

omputes and sends the recovery matrix to the cloud for enquiring

istorical records. The cloud accesses to the encrypted historical

ecord as demand and computes the sparse representation vector

y solving the computationally intensive � 1 optimization. Then the

parse representation vector is sent back to user’s client and the

riginal respiration cycles are reconstructed from simple multipli-

ation of representation vector and the learned sparse dictionary. 

In this section, we first introduce respiration circles re-

ated data extraction and encryption performed in smartphone,

hich includes targets’ feature points tracking, random sampling

nd encryption. Then communication between smartphone and

loud/server is mentioned in 3.2 that contains efficient historical

ata reconstruction and final respiration rate computation. 
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Fig. 2. Respiration cycles extraction and encryption on smartphones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Feature centroid points tracking and random sampling. (For interpretation of 

the references to color in this figure text, the reader is referred to the web version 

of this article.) 
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3.1. Respiration cycles extraction and encryption 

Fig. 2 presents the steps of extracting and encrypting the data

related to respiration cycles. There is medical evidence showing

that human’s breath and heartbeats can result in subtle move-

ments of their heads [1] . In HealCam, the data related to respi-

ration cycles is extracted from the head motions of the target from

a video stream perceived from Live Preview (without saving the

video to the internal memory) on smartphones based on the ap-

proach proposed by Balakrishnan et al. [3] . To track head mo-

tions, instead of capturing the whole face area in the video stream,

HealCam extracts feature points of the target and tracks the trajec-

tory of their centroid. Then the centroid motion data is stored as

the extraction of the respiration cycles related data. However com-

pared with the existing work, our approach is significantly more

energy and computation efficient with non-uniform random sam-

pling inspired by compressive sensing [18] . 

3.1.1. Features extraction and tracking 

Before starting the system, a smartphone should be fixed by a

phone holder to avoid irrelevant motions of the hardware. Then

the Preview functionality is triggered to obtain a video stream

of the target’s face and the preview frequency is set as 30 FPS

(Frames Per Second). To extract the head motions from of the tar-

get, we follow similar approach in [3] : we first apply the Viola and

Jones face detector [19,20] to find the region of the face so that to

locate the tracking area [21] . The area around mouth and eyes is

removed to eliminate the irrelevant motions when the target is

blinking or speaking. The location of face in the first face image

is set as the reference. Then we adopt Lucas Kanade tracker avail-

able in OpenCV [19] to track the relative positions of the feature

points in different frames to the reference. The centroids of the

feature points in each frame are computed and their displacement

trajectory in vertical direction are recorded as the representation

of head motions. A demonstration of the trajectory in full frame

rate (30 FPS) is shown in Fig. 3 and the corresponding data vector

x = { x 1 , x 2 , . . . , x i , . . . , x n } in full frame rate is regarded as the origi-

nal data vector of the respiration cycles which can be used to infer

the respiration rate of the target. 

3.1.2. Random sampling 

It is known that video processing is computationally intensive

and will drain the battery of the smartphone quickly. To save video

processing energy, uniformly sampling the video frames is often

applied and only the remaining frames will be processed. However,

the minimal frame rate of uniform approach is bounded by the

theory of Nyquist frequency and noises. We propose non-uniform

random sampling inspired by the emerging theory of compressive
ensing [18] to further reduce the frame rate. As shown in Fig. 3 ,

ifferent from the uniform approach, non-uniform random sam-

ling picks a small subset of the video frames and stores their

orresponding centroids(red points in the figure) in a non-uniform

nd random sequence which can be expressed as, 

 = �x (1)

here y ∈ R 

m consists of the relative head motions of the m cho-

en frames to the reference frame and m � n . The random selec-

ion matrix � ∈ R 

m ×n is a sparse matrix with 1s or 0s as its ele-

ents and it is generated locally on smartphones. It is sparse be-

ause most of its elements are 0s and only one entry in each row is

on-zero (i.e., 1). This sparse matrix is widely used in efficient data

ollection based on compressive sensing [22–24] . It is worth noting

hat the features extraction and tracking are processed on the sam-

led frames directly (i.e., after random sampling) therefore only y

ill be obtained locally. The original data vector x will be only re-

overed in enquiry stage which will be detailed in Section 3.2.1 . 

In uniform sampling approach, an acceptable approximation

f the original respiration cycles can be achieved using linear or

pline interpolation as the evaluations in Section 4.2 . However, in

andom sampling approach, the original respiration cycles cannot

e recovered without the knowledge of the sparse matrix � which

s stored on user’s smartphone. Therefore, random sampling is able

o both reduce computational cost and protect the data privacy. 

.1.3. Random perturbation 

Though random sampling protects the original data, it is still

ulnerable to sophisticated attacks with sufficient observations

hen fixed sparse matrix is used [25] . Random perturbation is a

tandard encryption method in the area of data security, whose

ommon methods are adding random noise and matrix to raw

ata. HealCam exploits the random matrix method to encrypt the

ata. To further boost the security, we adopt the random pertur-

ation approach proposed in [26] to encrypt the extracted head

otions data vector from random sampling, 

 i = p i y i (2)

here p i ∈ R 

m ×m is a perturbation matrix generated from a seed

hich is simple integer selected and stored locally on smart-

hones. z i is the cypher text of y i in the segment i . The seed can be

sed to regenerate the same perturbation matrix in enquiry stage.

n the real implementation, data is processed for each 30-s seg-

ent therefore the perturbation matrix changes in each 30 s. With

he random perturbation, the security of HealCam is improved; the

ypher texts can be totally different even the sampled data vectors
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Fig. 4. Historical record enquiry and reconstruction. 

a  

t  

p

 

c  

o  

n  

a  

l

3

 

n  

W  

a  

s  

v  

p  

p  

t  

(  

t  

o

3

 

a  

t  

r

r

w  

h  

t  

s  

s

3

 

i  

t  

c

θ  

w

 

u  

t  

t

3

 

s

x

w  

n

3

 

a  

r

0

 

t  

t  

fi  

w  

v  

r  

t  

�

�  

w  

e  

R

w  

c

L  

x  

n  

r  

2  

3  

d  

s  

d  

e  

i  

g  

S  

r  

s

4

 

s  

u  

R  

t  

n  

c  

p  
re the same. Meanwhile, the perturbation matrix is a square ma-

rix and is invertible which indicates the accuracy can be exactly

reserved. 

At last, the cypher texts { z 1 , z 2 , z 3 , . . . , z i , . . . , } are transferred to

loud and stored for the future enquiry. So far, the privacy of the

riginal respiration cycles has been well protected. The cloud can-

ot recover or infer the original data without the sparse matrix

nd the perturbation matrix. Meanwhile, the protection is quite

ightweight, it only involves simple matrix multiplication. 

.2. Privacy-preserved historical record enquiry 

As only cypher texts are stored in the cloud, data reconstruction

eeds to be done when users send a enquiry for historical records.

e propose a new user enquiry scheme for HealCam in Fig. 4 . To

chieve energy-efficiency, we split the data reconstruction into two

teps: the cloud is responsible for computing sparse representation

ector via computationally intensive � 1 optimization; user’s smart-

hone reconstructs the original respiration cycles locally by com-

uting the lightweight matrices multiplication. HealCam facilitates

he user-specific dictionary learned from their own training data

collected before using the system) on a trusted third part (e.g.,

heir own P.C.) to protect user’s privacy. The detailed description

f this stage is as below. 

.2.1. User enquiry 

When a mobile user is curious about his historical record, such

s the j th data segment, he first regenerates the perturbation ma-

rix p j with the corresponding seed. Then the recovery matrix

 j ∈ R 

m ×n is formulated as, 

 j = p j �D (3) 

here D ∈ R 

n ×n is the user-specific sparse dictionary learned from

is own data collected before setting up the whole system. Then

he recovery matrix r j and the corresponding segment index j are

ent to the cloud to trigger the enquiry about the historical record

tored on the cloud. 

.2.2. � 1 Optimization for sparse representation 

When the cloud receives the recovery matrix r j and the index j ,

t first finds the cypher text z j according to the index and computes

he sparse representation vector of the cypher text by solving the

omputationally intensive � 1 optimization problem, 

ˆ 
j = arg min || θ j || 1 s.t. z j = r j θ j (4)
here ˆ θ j ∈ R 

n is called a sparse representation vector. 

The sparse representation vector is then returned to the mobile

ser for final reconstruction. As the dictionary D is user-specific,

he cloud cannot reconstruct or approximate the original respira-

ion cycles without the knowledge of the dictionary. 

.2.3. Reconstruction 

The final reconstruction is completed on user’s smartphone by

imple matrix multiplication, 

ˆ 
 j = D ̂

 θ j (5) 

here the dictionary D is user-specific and obtained from dictio-

ary learning. 

.2.4. Peak detection and respiration rate computation 

To determine the respiration rate in the enquired time segment,

 butterworth bandpass filter is firstly applied to remove the ir-

elevant noises, and the bandwidth we set in HealCam is 0.1 Hz–

.5 Hz, which can cover the scope of respiration rate for adults. 

The respiration signals are regular for most of the users and

here are some harmonic peaks existing in the signals. To detect

he peaks related to respiration, we perform peak detection on the

ltered signal. A sliding window is used in peak detection and

e label each sample in the signal as a peak if it is the largest

alue in a window centered at the sample, the frame number se-

ies T = { t 1 , t 2 , . . . , t i , . . . } of the detected peaks is also generated by

his step. Then the mean value of the duration between each peaks

t is formulated as, 

t = mean (di f f (T )) (6)

here diff( T ) is a series containing the differentials between each

lement in T . Apparently, the mean time interval between peaks is
�t 

f reconstruction 
, and we can derive the respiration rate of the user by 

espirationRate = 

60 f reconstruction 

�t 
(7) 

here f reconstruction is the frequency(30 Hz in this paper) of the re-

onstructed signal. 

earning Sparse Dictionary . Given a set of N data vectors { x 1 ,

 2 , ..., x N } ∈ R 

n , sparse dictionary learning aims to find a dictio-

ary D ∈ R 

n ×n in which the data vectors can be sparsely rep-

esented [27] . Before setting up the whole system, we collected

0 min video recording from each user and divided the video into

0-s segments; each segment corresponds to one data vector for

ictionary learning. The data vectors are extracted from the video

egments in full frame rate (i.e., 30 FPS). The user-specific sparse

ictionaries are learned for each user and they are different from

ach other. Dictionary learning is computationally intensive but it

s once-off and can be computed offline. There are different al-

orithms for learning sparse dictionary. In this paper, we choose

PAMS proposed in [27] which achieved higher recognition accu-

acy for GPS trajectory compression in [28] compared with the

tate-of-the-art methods. 

. Dataset evaluations 

The aim of this section is to evaluate the performance on recon-

truction accuracy of our proposed sampling approach, i.e., non-

niform Random Sampling using Dictionary Learning (termed as

SDL) on reconstruction. We first determine whether the respira-

ion cycles can be sparsely represented with the learned dictio-

ary. We then evaluate the reconstruction accuracy of RSDL and

ompare it with the other two methods, RSDCT and uniform Inter-

olation. RSDCT applies random sampling but uses standard DCT
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Fig. 5. Sparse coefficients in different domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Reconstruction accuracy of RSDL, RSDCT and Interpolation approaches. 

Fig. 7. Samples of reconstruction results. 
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basis for reconstruction. Uniform interpolation is also included as

benchmark. 

We recruit 32 subjects (16 males and 16 females)in good health

condition by providing some incentive to collect two datasets

for evaluation. The data collection consists of two sessions (one

dataset for each session). In both sessions, each subject is seated

regularly and breath normally. And a 20 min video recording in

full frame rate (30 FPS) is collected for everyone. The first dataset

(from the first session) is used for dictionary learning while the

second dataset (from the second session) is used for accuracy eval-

uation. 

4.1. Sparsity evaluation 

The video recordings are first divided into 30-s segments. We

then extract a vector of trajectory of the head motions for each

segment, i.e., the original respiration cycles in full frame rate. We

use the extracted data vectors from the first dataset for training

the dictionary and then compute the sparse representations of the

data vectors from the second dataset. We find that the learned dic-

tionary has a better performance than the standard DCT basis on

sparse representation, i.e., its dominant coefficients are more con-

centrated. We present an example of the sparse representation co-

efficients in Fig. 5 . The figure on the top is an example of the orig-

inal data vector. The corresponding sparse coefficients in learned

dictionary and DCT domain are shown in the middle and the bot-

tom figures respectively. The results show that sparse representa-

tion coefficients are more concentrated with the learned dictionary

which indicates better reconstruction accuracy. 

4.2. Reconstruction accuracy 

In this section, we compare the reconstruction accuracy of three

different methods, i.e., RSDL, RSDCT and spline interpolation. The

first two methods utilize random sampling while the spline in-

terpolation works on the uniform sampling. We gradually change

the average sampling frequency from 0.5 Hz to 2 Hz and compute

the corresponding Mean Squared Errors (MSEs) between the origi-

nal and reconstructed data vectors. The results in Fig. 6 show that

our proposed method RSDL achieves significantly lower MSE com-

pared with the other two methods and the performance gain di-

minishes when the sampling frequency is over 1 Hz. Considering

the computational issue, we set the average sampling rate as 1 Hz

in our system implementation. We conclude this section by show-

ing a number of samples of reconstructed data vectors from the

three different approaches when sampling rate is 1 Hz. In Fig. 7 ,

we present the original and reconstructed respiration cycles from

three different subjects in different columns. It can be seen that
SDL achieves very close approximation to the ground truth and

t outperforms the other two approaches significantly. RSDL recon-

truct randomly sampled data, while uniform sampled data is in-

erpolated to reconstruct. The results of the three examples intu-

tively reflect that with the same sampling rate, randomly sampled

ata performs better than the data collected in uniform way. 

At last, it is worth noting that spline interpolation and RSDCT

annot preserve the data privacy: it is obvious that uniform sam-

ling does not involve any protection scheme; RSDCT utilizes stan-

ard DCT basis which is not user-specific, the cloud is able to re-

onstruct the original data vector after obtaining the sparse coeffi-

ients by using standard DCT basis. 

.3. Respiration rate accuracy 

The main application of HealCam is to monitor vital signs of

sers, in this section, we evaluate the respiration rate accuracy by

omparing the respiration rate generated from the 30 Hz video to

hat from HealCam.There is nor difference comparing results gen-

rated from the 30 Hz video to that counted by the subjects when

ecording video, that we consider respiration rate generated from

0 Hz video as the ground truth data. A sliding window is used to

etect peaks related to respiration, and in our experiment, we set

5 as the length of the window. We show the number of peaks de-

ected by ground truth and HealCam as well as the respiration rate

enerated from the detected peaks in Table 1 . Error values are do-

ated by the percentage of the differential value between HealCam

nd ground truth. The respiration rate results of the whole 32 sub-

ects we recruit shown in Table 1 show that HealCam can achieve

ignificantly high accuracy in monitoring respiration rate, the accu-
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Table 1 

Respiration rate and numbers of peaks detected from 30Hz video and by HealCam. 

Respiration rate (per minute) Number of peaks 

Sub. Ground truth HealCam (% error) Ground truth HealCam (% error) 

1 23.8 23.8(0) 12 12(0) 

2 27.0 26.8(0.7) 14 14(0) 

3 21.2 21.1(0.4) 10 10(0) 

4 20.5 20.5(0) 10 10(0) 

5 22.8 22.8 (0) 12 12(0) 

6 22.2 22.2(0) 12 12 (0) 

7 20.7 20.7(0) 10 10(0) 

8 21.5 21.5(0) 11 11(0) 

9 19.9 19.9(0) 10 10 (0) 

10 18.2 18.1(0.5) 9 9(0) 

11 26.4 26.4(0) 14 14 (0) 

12 30.0 30.0(0) 15 15(0) 

13 20.9 23.3(11.5) 10 11(10.0) 

14 28.9 28.9 (0) 14 14(0) 

15 23.3 23.3(0) 11 11 (0) 

16 26.4 24.0(9.1) 12 11(8.3) 

17 21.3 21.3(0) 11 11(0) 

18 23.5 21.4 (8.9) 12 11 (8.3) 

19 23.4 23.4(0) 11 11(0) 

20 21.1 21.1(0) 11 11 (0) 

21 19.4 19.4(0) 9 9 (0) 

22 18.8 18.8(0) 10 10 (0) 

23 23.1 23.1(0) 12 12(0) 

24 21.7 21.7(0) 11 11(0) 

25 23.7 23.7(0) 12 12(0) 

26 25.1 25.1 (0) 13 13(0) 

27 23.5 23.5 (0) 12 12(0) 

28 24.2 24.2(0) 13 13(0) 

29 30.4 30.4(0) 16 16(0) 

30 27.1 27.1(0) 14 14(0) 

31 22.0 22.0(0) 10 10 (0) 

32 24.2 21.5(11.2) 10 9 (10.0) 
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acy of the monitored respiration rate of HealCam is 98.7%, which

epresents the high practical value of HealCam. 

.4. System evaluation 

To evaluate the system cost of HealCam, we implement Heal-

am on smartphones and high performance server. We also im-

lement the original head motion detection approach proposed

n [3] and a recent proposed encryption method, Talos [17] , as

enchmarks to demonstrate the improvement of HealCam on en-

rgy and computational efficiency. Talos is proposed as a efficient

ersion extended from CryptDB [16] however it still consumes over

 hundred times more energy and computation than compressive

ensing based encryption according to our evaluation. 

In our implementation, the smartphone used for implementing

he user client is Samsung Galaxy Note 4 which runs Android OS

4.4. It has 2.7GHz processor and 3GB Ram onboard and its battery

apacity is 3200 mAh. Then we use a high performance PC to host

he server side of HealCam. It is an Apple Mac Pro-running macOS

ierra. It has a 3GHz 8-core Intel Xeon E5 cpu, 32GB 1866 MHz

am and 3GB AMD Firepro GPU. Wi-Fi is used for data transmis-

ion between the smartphones and the server via Wi-Fi router. 

We first evaluate the improvement of energy efficiency on video

rocessing. As the server is connected to power source and has

elatively high computational resources, we only concern the re-

ource consumptions of user client on smartphones. We use the

repn Power Profiler [29] ( Fig. 8 ) to measure the energy consump-

ion of the user client and compute the average and standard de-

iation of the results from 30 independent trials. We set the av-

rage frame rate as 1FPS, i.e., we sample 30 frames for each 30-s

egment. We divide the energy consumption into three different

omponents (transmission consumption is negligible as our sys-

em only uploads little data, i.e., 30 data points for each 30-s seg-
ent): Preview, Face Detection and Motion Extraction. As the re-

ults shown in Fig. 9 (a), HealCam saves significant energy on video

rocessing including face detection, feature extraction and tracking.

t reduces the energy consumption in face detection and motion

xtraction by 27.6 times and 30.9 times respectively and overall it

chieves 23.6 times better performance on energy efficiency com-

ared with the original head motion extraction method with full

rame rate (30 FPS). 

We then evaluate the improvement of computational efficiency

n video processing. The computation time is obtained from the

onsole of Android studio. Fig. 9 (b) demonstrates the computation

ime of the face detection and motion extraction for each 30-s

egment. Again, the average and standard deviation are obtained

rom 30 independent trials. We also evaluate the time delay of the
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Fig. 9. Resouce consumption on smartphone. 
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system on smartphones. The system is implemented in multiple

threads and the video frames are processed in sequential manner

to reduce the system delay, i.e., face detection and motion extrac-

tion will be triggered once a new sampled frame is taken. From

the results we can find HealCam is 24.9 times and 27.2 times faster

than original approach in face detection and motion extraction re-

spectively and the overall improvement is 26.67 times. The system

delay of HealCam on smartphones is within 0.58 s which indicates

no cumulative delay. However the original approach keeps process-

ing over 434 s after the 30 s preview. As the system runs on the

30-s segments, the original approach brings overwhelming cumu-

lative system delay for continuous monitoring scenario and is not

applicable on smart devices. 

As discussed before, our proposed encryption and decryption

method is lightweight. It only involves very simple matrix multi-

plication. We compare it with the latest encryption method Talos

in energy and computation efficiency.The encryption part of Talos

is implemented in smartphones, and we conduct experiments with

our dataset on both Talos and HealCam to encrypt data and mea-

sure energy cost. The results show that the compressive sensing

based encryption method is 172 times faster and 99 times more

energy-efficient than Talos. 

5. Conclusion 

In this paper, we propose HealCam, an energy-efficient and

privacy-preserved respiration cycles monitoring system on camera-

enabled smart devices. The overall system design is based on
he related theories of compressive sensing. First we apply non-

niform random sampling instead of the traditional uniform

ampling to reduce the video processing cost while achieving

ignificantly better reconstruction accuracy. Then by facilitating

ightweight compressive sensing based encryption and decryption

trategy, the mobile users are able to encrypt and decrypt their

ata of respiration cycles in highly efficient manner and meanwhile

rotect their data privacy against the attacks from the cloud. 
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